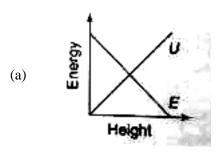
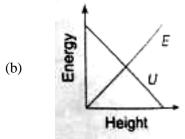
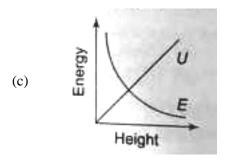
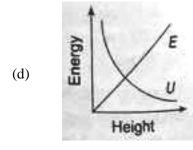


Max. Marks: 100 Date: 17.10.2022

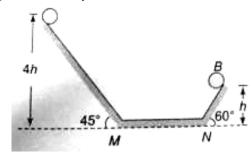

JB 2 MR BATCH (SET A) PHYSICS : PART TEST


Topic: Work Energy Power

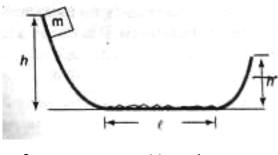

1.		x of mass 25 kg			down an incline of friction?	ed plane 8 metre	e long and 5 m	etre high. It is	found
	(a)	79.6 N	(b)	96.6 N	(c)	76.6 N	(d)	116.6 N	
2.	Give	n that the position	on of the bod	y in m is a fun	ction of time as	follows: $x = 2t$	$^{4} + 5t + 4$		
	The n	nass of the body	y is 2 kg. Wh	nat is the increa	ase in its kinetic	e energy one sec	cond after the s	tart of motion	?
	(a)	168 J	(b)	169 J	(c)	32 J	(d)	144 J	
				Space	for Rough Wo	ork			



3. Which of the following graphs is correct between kinetic energy (E), potential energy (U) and height (h) from the ground of the particle

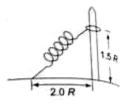


4. Two identical balls A and B are released from the positions shown in figure. They collide elasticity on horizontal position MN. The ratio of the heights attained by A and B after collision will be (neglect friction):

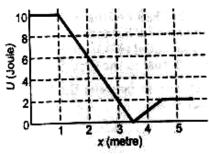

- (a) 1:4
- (b) 2:1
- (c) 4:13
- (d) 2:5

5.	fricti	•	N acts on the			_		stance of 5.0 m. at work is done of			
	(a)	250 J	(b)	215 J	(c)	35 J	(d)	10 J			
6.		•	•	which is proportion		istance covere	ed. If distance c	overed by denote	d by		
	(a)	X	(b)	x^2	(c)	$x^{3/2}$	(d)	None of these			
7.		rce of $\vec{F} = 2x\hat{i}$ (1, 2, 3) m to		N is acting on	particle. Find	the work don	e by this force i	n displacing the	body		
	(a)	– 10 J	(b)	100 J	(c)	10 J	(d)	1 J			
8.	The work done in moving a body of mass 4 kg with uniform velocity of 5 ms ⁻¹ for 10 seconds on a surface of $\mu = 0.4$ is (take $g = 9.8$ m/s ²)										
	(a)	584 J	(b)	784 J	(c)	684 J	(d)	484 J			
9.	A body of mass 6 kg is under a force which causes displacement in it given by $S = \frac{t^2}{4}$ metres where t is time. The work done by the force in 2 seconds is										
	(a)	12 J	(b)	9 J	(c)	6 J	(d)	3 J			
10.		If the net work done by external forces on a particle is zero, which of the following statements about the particle must be true?									
	(a)	Its velocity	is zero		(b)	Its velocity	is decreased				

- 11. A force acts on a 30 gm particle in such a way that the position of the particle as a function of time is given by $x = 3t 4t^2 + t^3$, where x is in metres and t is in seconds. The work done during the first 4 seconds is
 - (a) 5.28 J
- (b) 450 mJ
- (c) 490 mJ
- (d) 530 mJ
- 12. A block is released from rest from a height $h = 5\,$ m. After travelling through the smooth curved surface it moves on the rough horizontal surface through a length $l = 8\,$ m and climbs onto the other smooth curved surface through a height h'. If $\mu = 0.5$, find h'.


- (a) 2 m
- (b) 3 m
- (c) 1 m
- (d) zero
- 13. A block of mass m sliding down an incline at constant speed is initially at a height h above the ground, as shown in the figure above. The coefficient of kinetic friction between the mass and the incline is μ. If the mass continues to slide down the incline at a constant speed, how much energy is displaced by friction by the time the mass reaches the bottom of the incline?

- (a) mgh/θ
- (b) mgh
- (c) μ mgh/sin θ
- (d) mgh/sin θ



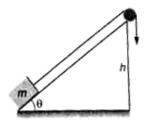
14. A ring of mass m can slide over a smooth vertical rod as shown in figure. The ring is connected to a spring of force constant k = 4 mg/R, where 2R is the natural length of the spring. The other end of spring is fixed to the ground at a horizontal distance 2R from the base of the rod. If the mass is released at a height 1.5 R, then the velocity of the ring as it reaches the ground is

- (a) \sqrt{gR}
- (b) $2\sqrt{gR}$
- (c) $\sqrt{2gR}$
- (d) $\sqrt{3gR}$
- 15. An 800 N marine in basic training climbs a 12.0 m vertical rope at a constant speed in 8.00 s. What is his power output?
 - (a) 1.8 kW
- (b) 1.2 kW
- (c) 2.2 kW
- (d) 2.8 kW
- Power supplied to a particle of mass 2 kg varies with time as $P = \frac{3t^2}{2}$ watt. Here t is in second. If velocity of particle at t = 0 is v = 0, the velocity of particle at time t = 2 s will be:
 - (a) 1 m/s
- (b) 4 m/s
- (c) 2 m/s
- (d) $2\sqrt{2} \text{ m/s}$
- 17. A 30 m deep well is having water upto 15 m. An engine evacuates it in one hour. The power of the engine, if the diameter of the well is 4 m is
 - (a) 11.55 kW
- (b) 1155 kW
- (c) 23.10 kW
- (d) 2310 kW
- 18. Work done when a force $F = (\hat{i} + 2\hat{j} + 3k) N$ acting on a particle takes it from the point $r_1 = (\hat{i} + \hat{j} + k)$ to the point $r_2 = (\hat{i} \hat{j} + 2k)$ is
 - (a) -3 J
- (b) -1 J
- (c) zero
- (d) 2 J

- A particle moves along the x-axis from x = 0 to x = 5 m under the influence of a force given by $F = 7 2x + 3x^2$. 19. The work in the process is
 - 360 J (a)
- (b) 85 J
- 185 J (c)
- (d) 135 J
- 20. A body with mass 1 kg moves in one direction in the presence of a force which is described by the potential energy graph. If the body is released from rest at x = 2 m, than its speed when it crosses x = 5 m is (Neglect dissipative forces)

- $2\sqrt{2} \text{ ms}^{-1}$ (a)
- (b) 1 ms^{-1}
- $2\ ms^{-1}$ (c)
- 3 ms^{-1} (d)
- A body has kinetic energy E when projected at angle of projection for maximum range. Its kinetic energy at the 21. highest point of its path will be
 - Е (a)
- (b)

- (c) $\frac{E}{\sqrt{2}}$
- (d) zero
- 22. A projectile is fired from the origin with a velocity v_0 at an angle θ with the x-axis. The speed of the projectile at an altitude h is
 - (a) $v_0 \cos \theta$
- (b) $\sqrt{v_0^2 2gh}$ (c) $\sqrt{v_0^2 \sin^2 \theta 2gh}$ (d)
 - None of these


- 23. A spring of force constant k is cut in two parts at its one-third length. When both the parts are stretched by same amount. The work done in the two parts will be
 - (a) equal in both

(b) greater for the longer part

(c) greater for the shorter part

(d) data insufficient

24. A block of mass m is directly pulled up slowly on a smooth inclined plane of height h and inclination θ with the help of a string parallel to the incline. Which of the following statement is incorrect for the block when it moves up from the bottom to the top of the incline?

- (a) Work done by the normal reaction force is zero (b) Work done by the string is mgh
- (c) Work done by gravity is mgh

- (d) Net work done on the block is zero
- 25. A block of mass 10 kg is moving in x-direction with a constant speed of 10 m/s. It is subjected to a retarding force F = -0.1 x J/m during its travel from x = 20 m to x = 30 m. Its final kinetic energy will be
 - (a) 475 J
- (b) 450 J
- (c) 275 J
- (d) 250 J

Date: 17.10.2022

JB 2 MR BATCH CHEMISTRY : PART TEST SET - A

Topic: Atomic Structure + Mole Concept + Periodic

26.	Which of the following is electronic configuration of Cu^{2+} (Z = 29)?										
	(a)	$[Ar]4s^13d^8$	(b)	$[Ar]4s^23d^{10}4p^1$	(c)	$[Ar]4s^{1}3d^{10}$	(d)	[Ar]3d ⁹			
27.	For giv	en energy, $E = 3.03$	$\times 10^{-19}$	Joules corresponding	wavele	$ngth is (h = 6.626 \times 1)$	0 ⁻³⁴ J see	c, $c = 3 \times 10^8 \text{ m/sec}$			
	(a)	65.6 nm	(b)	6.56 nm	(c)	3.4 nm	(d)	656 nm			
28.	The ma	ignetic quantum nur	nber for	the outermost electro	n in sod	ium atom is					
	(a)	-2	(b)	0	(c)	+1	(d)	-1			
29.	What w	vill be the mass of a	particle	if uncertainty in its p	osition i	s 10 ⁻⁸ m and velocity	is 5.26	$\times 10^{-25} \text{ ms}^{-1}$			
	(a)	0.01 kg	(b)	0.1 kg	(c)	1 kg	(d)	10 kg			
30.	The nit	rogen atom has 7 pr	otons a	nd 7 electrons, the niti	ride ion	(N ³⁻) will have					
	(a)	7 protons and 10 e	lectrons		(b)	4 protons and 7 elec	trons				
	(c)	4 protons and 10 e	lectrons		(d)	10 protons and 7 ele	ctrons				
31.	The wa	velength of a specti	al line f	or an electronic transi	tion is in	nversely related to					
	(a)	the number of elec	trons un	dergoing the transitio	n						
	(b)	the nuclear charge	of the a	tom							
	(c)	the difference in th	e energ	y of the energy levels	involve	d in the transition					
	(d)	the velocity of the	electron	undergoing the trans	ition						
32.	The iso	topes of atoms of a	n eleme	nt differ in							
	(a)	Atomic number			(b)	Mass number					
	(c)	Number of electron	ns		(d)	Chemical properties					
33.	Write t	he values of n and l	quantur	n numbers for 5f							
	(a)	5, 3	(b)	3,5	(c)	3, 4	(d)	4, 3			

(a) Boron	npound possesses 200 n has two stable is dic table is 10.8	(b)	400	(c)	155	(d) that should ap (d)	355 ppear for boron 10.0	in the		
		•	•			(d)	355			
A con	npound possesses	8% sulph	ur by mass. The I	east moiecui	iai iliass is:					
			1 701 1	and maland	lar mass is?					
		(b)	18	(c)	27	(d)	36	c mass		
		. ,						c mass		
isotop	pes is							of the		
The n (a)	0.34 g	22 molecu (b)	les of ammonia is 3.4 g	(c)	3.4 kg	(d)	34 g			
		22 .		` '	No electrons	will be emitte	ed			
(a)	$4.4\times10^{-20}\mathrm{J}$	on is		(b)	0.425 eV					
-	•		o strikes a metal s	surface havii	ng work functio	n of 2.20 eV.	The kinetic ene	ergy of		
(c)				(d)	proton and electron					
			ed mainly by	(b)	neutron and	electron				
_		(b)	on in the hydrogo second	en atom is –(c)	6.8 eV. Indicate	in which exc	ited state, the el	lectron		
			-				_			
		_			4	(1)	4			
(d)	metal All									
(c)		emitted el	ectron is greater	than zero if	incident energy	is less than th	nreshold energy	of the		
(b)	Number of photo electrons emitted is directly proportional to the intensity of incident light									
,										
	(a) (b) (c) (d) The s (a) The p is pre (a) (c) A photothe err (a) (c) The m (a) Neon isotop (a) The coof the (a)	(a) K.E of emitted (b) Number of photo (c) The K.E of an emetal (d) All The sub-energy level had (a) 3d The potential energy of is present? (a) first The mass of an atom is (a) neutron and neutron and proto (c) neutron and proto A photon of wavelength the emitted photo electron (a) 4.4 × 10 ⁻²⁰ J (c) 2.20 eV The mass of 1.205 × 10 (a) 0.34 g Neon has two isotopes is (a) 1:9 The oxide of an element of the metal will be (a) 9	(a) K.E of emitted electron is (b) Number of photo electron (c) The K.E of an emitted elemetal (d) All The sub-energy level having min (a) 3d (b) The potential energy of an electris present? (a) first (b) The mass of an atom is constitute (a) neutron and neutrino (c) neutron and proton A photon of wavelength 5000 At the emitted photo electron is (a) 4.4 × 10 ⁻²⁰ J (c) 2.20 eV The mass of 1.205 × 10 ²² molecut (a) 0.34 g (b) Neon has two isotopes Ne ²⁰ and I isotopes is (a) 1:9 (b) The oxide of an element possessed of the metal will be (a) 9 (b)	(a) K.E of emitted electron is independent on (b) Number of photo electrons emitted is directly of the K.E of an emitted electron is greater metal (d) All The sub-energy level having minimum energy is (a) 3d (b) 5p The potential energy of an electron in the hydrogous is present? (a) first (b) second The mass of an atom is constituted mainly by (a) neutron and neutrino (c) neutron and proton A photon of wavelength 5000 A° strikes a metal stree emitted photo electron is (a) 4.4 × 10 ⁻²⁰ J (c) 2.20 eV The mass of 1.205 × 10 ²² molecules of ammonia is (a) 0.34 g (b) 3.4 g Neon has two isotopes Ne ²⁰ and Ne ²² . If atomic w isotopes is (a) 1:9 (b) 9:1 The oxide of an element possesses the formula Moof the metal will be (a) 9 (b) 18	(b) Number of photo electrons emitted is directly proportic (c) The K.E of an emitted electron is greater than zero if metal (d) All The sub-energy level having minimum energy is (a) 3d (b) 5p (c) The potential energy of an electron in the hydrogen atom is eis present? (a) first (b) second (c) The mass of an atom is constituted mainly by (a) neutron and neutrino (b) (c) neutron and proton (d) A photon of wavelength 5000 A° strikes a metal surface having the emitted photo electron is (a) 4.4 × 10 ⁻²⁰ J (b) (c) 2.20 eV (d) The mass of 1.205 × 10 ²² molecules of ammonia is (a) 0.34 g (b) 3.4 g (c) Neon has two isotopes Ne ²⁰ and Ne ²² . If atomic weight of Neotisotopes is (a) 1:9 (b) 9:1 (c) The oxide of an element possesses the formula MO ₂ . If the equal of the metal will be (a) 9 (b) 18 (c)	(a) K.E of emitted electron is independent on the frequency of incident photo by Number of photo electrons emitted is directly proportional to the intention of the K.E of an emitted electron is greater than zero if incident energy metal (d) All The sub-energy level having minimum energy is (a) 3d (b) 5p (c) 4s The potential energy of an electron in the hydrogen atom is -6.8 eV. Indicate is present? (a) first (b) second (c) third The mass of an atom is constituted mainly by (a) neutron and neutrino (b) neutron and electron in emitted photo electron is (d) proton and electron is (a) $4.4 \times 10^{-20} \text{J}$ (b) 0.425eV (c) 2.20eV (d) No electrons The mass of $1.205 \times 10^{22} \text{molecules}$ of ammonia is (a) 0.34g (b) 3.4g (c) 3.4kg Neon has two isotopes Ne^{20} and Ne^{22} . If atomic weight of Neon is 20.2 , the raisotopes is (a) $1:9$ (b) $9:1$ (c) 70% The oxide of an element possesses the formula MO_2 . If the equivalent mass of of the metal will be (a) 9 (b) 18 (c) 27	(a) K.E of emitted electron is independent on the frequency of incident photon (b) Number of photo electrons emitted is directly proportional to the intensity of incident (c) The K.E of an emitted electron is greater than zero if incident energy is less than the metal (d) All The sub-energy level having minimum energy is (a) 3d (b) 5p (c) 4s (d) The potential energy of an electron in the hydrogen atom is -6.8 eV. Indicate in which excises present? (a) first (b) second (c) third (d) The mass of an atom is constituted mainly by (a) neutron and neutrino (b) neutron and electron (c) neutron and proton (d) proton and electron A photon of wavelength 5000 A° strikes a metal surface having work function of 2.20 eV. the emitted photo electron is (a) 4.4 × 10 ⁻²⁰ J (b) 0.425 eV (c) 2.20 eV (d) No electrons will be emitted the mass of 1.205 × 10 ²² molecules of ammonia is (a) 0.34 g (b) 3.4 g (c) 3.4 kg (d) Neon has two isotopes Ne ²⁰ and Ne ²² . If atomic weight of Neon is 20.2, the ratio of the relationation of the metal will be (a) 9 (b) 18 (c) 27 (d)	(a) K.E of emitted electron is independent on the frequency of incident photon (b) Number of photo electrons emitted is directly proportional to the intensity of incident light (c) The K.E of an emitted electron is greater than zero if incident energy is less than threshold energy metal (d) All The sub-energy level having minimum energy is (a) 3d (b) 5p (c) 4s (d) 4p The potential energy of an electron in the hydrogen atom is -6.8 eV. Indicate in which excited state, the elis present? (a) first (b) second (c) third (d) fourth The mass of an atom is constituted mainly by (a) neutron and neutrino (b) neutron and electron (c) neutron and proton (d) proton and electron A photon of wavelength 5000 A° strikes a metal surface having work function of 2.20 eV. The kinetic energy the emitted photo electron is (a) 4.4×10^{-20} J (b) 0.425 eV (c) 2.20 eV (d) No electrons will be emitted The mass of 1.205×10^{22} molecules of ammonia is (a) 0.34 g (b) 3.4 g (c) 3.4 kg (d) 34 g Neon has two isotopes Ne^{20} and Ne^{22} . If atomic weight of Neon is 20.2 , the ratio of the relative abundances isotopes is (a) $1:9$ (b) $9:1$ (c) 70% (d) 80% The oxide of an element possesses the formula MO_2 . If the equivalent mass of the metal is 9 , then the atomic of the metal will be		

<u>Space for Rough work</u>

44.	The specific heat of metal is 0.16. Its approximate atomic weight would be										
	(a)	40	(b)	16	(c)	32	(d)	64			
45.	Whic	ch among the foll	owing grou	p of elements are sr	nallest in s	size?					
	(a)	I A group	(b)	II A group	(c)	VII A group	(d)	VI A group			
46.	Amo	Among the elements with the following electronic configurations, the one with the largest radius is									
	(a)	$[Ne]3s^2$	(b)	$[Ne]3s^23p^1$	(c)	$[Ne]3s^23p^3$	(d)	$[Ne]3s^23p^5$			
47.	The ionization potential values of an element are in the following order $I_1 < I_2 <<<< I_3 < I_4 < I_5$. The element is										
	(a)	Alkali metal			(b)	Chalcogen					
	(c)	Halogen			(d)	Alkaline earth me	tal				
48.	The l	I_1 , I_2 , I_3 and I_4 va	alues of an	element M are 120	kJ/mole,	600 kJ/mole, 1000 k	J/mole a	and 8000 kJ/mole. The			
	form	ula of its sulphate	e is								
	(a)	MSO_4	(b)	$M_2(SO_4)_3$	(c)	M_2SO_4	(d)	$M_3(SO_4)_2$			
49.	The l	P_1 of O, S, F and	Cl are in th	e order							
	(a)	F > O > Cl > S	S (b)	S > Cl > O > F	(c)	Cl > S > O > F	(d)	F > Cl > O > S			
50.											
	List-	.[List-II								
	(ato	mic number	(IUPAC nar	me)							
	of el	lement)									

List-I	List-II
(atomic number	(IUPAC name)
of element)	
A) 105	P) Uun
B) 107	Q) Uns
C) 109	R) Unp
D) 110	S) Une

 $(a) \qquad A-R; B-Q; C-S; D-P \ \ (b) \qquad A-R; B-S; C-Q; D-P \ \ (c) \qquad A-Q; B-S; C-R; D-P \ \ (d) \qquad A-S; B-R; C-Q; D-P \ \$

* * * * *

Max. Marks: 200 Date: 17.10.2022

JB 2 MR BATCH PHYSICS: PART TEST SET - A ANSWER KEY Topic: Work Energy Power

1.	(c)	2.	(d)	3.	(a)	4.	(c)	5.	(a)
6.	(b)	7.	(a)	8.	(b)	9.	(d)	10.	(d)
11.	(a)	12.	(c)	13.	(b)	14.	(b)	15.	(b)
16.	(c)	17.	(a)	18.	(b)	19.	(d)	20.	(a)
21.	(b)	22.	(b)	23.	(c)	24.	(c)	25.	(a)

Date: 17.10.2022

JB 2 MR BATCH CHEMISTRY : PART TEST SET - A ANSWER KEY

Topic: Atomic Structure + Mole Concept + Periodic

26.	(d)	27.	(d)	28.	(b)	29.	(a)	30.	(a)
31.	(c)	32.	(b)	33.	(a)	34.	(b)	35.	(c)
36.	(a)	37.	(c)	38.	(a)	39.	(a)	40.	(b)
41.	(d)	42.	(b)	43.	(a)	44.	(a)	45.	(c)
46.	(a)	47.	(d)	48.	(b)	49.	(a)	50.	(a)